If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2=19w
We move all terms to the left:
w^2-(19w)=0
a = 1; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·1·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*1}=\frac{0}{2} =0 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*1}=\frac{38}{2} =19 $
| 6x+17=97 | | -10n+5=-45 | | 5x-15=7×+3 | | 4x=12=2x+5 | | -4(9+n)=-68 | | 2x+11=129 | | -2/7-1/2y=-3/5 | | 12x^2+100x=0 | | u/8+10.6=-2.2 | | 2+w/3=-1.75 | | 4.1=-2v+29.7 | | 3+u/31.25=8 | | 4,756,505=2,896,112+1600x | | x^2+4x4=25 | | 9v+15=14v | | -5c=c=1/2 | | 10²-11n+10=0 | | 2.5x+1.5=4x-1 | | 6j2+9j2–7j+2j–9j2+6j=6 | | –6.7+2p=2.42 | | 18-4x=-50 | | -3v+12=-6v | | 19.86=2k+2.5 | | 4.3+10m=7.89 | | c/5.3+8.3=-8 | | x^2+5x-11=35 | | X(56)+(1-x)(57)=56.9354 | | X(56)+(1-x)(57)=7 56.9354 | | 4^(x+2)=8 | | X^4-45x^2+784=0 | | 42x15= | | 4x-7/4x+14=7/4(x+8)+1/2x |